

① a) For example, let $g = 2^n$,

$$A = B = \{0, 2, 4, \dots, 2^n - 2\}$$

$$\text{Then } |A| = |B| = |A+B| = n$$

$$\min(g, |A| + |B| - \lfloor \frac{n}{2} \rfloor) = 2^n - 1$$

(any other subgroups of $\mathbb{Z}/g\mathbb{Z}$ would work)

b) Assume wlog $B = B^* \cup \{0\}$.

(since $A + (B^* \cup \{0\}) \subset A + B$).

Follow outlines of proof of CD Thm.

Do induction on $|B|$.

$|B| = 1$ can be easily checked.

Can assume $2 \leq |A| \leq 2^n - 2$.

Let $\text{Stab}(A) = \{g \in \mathbb{Z}/g\mathbb{Z} : g + A = A\}$.

So $\text{Stab}(A) \leq \mathbb{Z}/g\mathbb{Z}$, $|\text{Stab}(A)| \leq g$.

Then we have that $\text{Stab}(A) \cap B = \{0\}$.

(otherwise, for all $b \in B \setminus \{0\}$, since $(b, g) = 1$, we have that $\mathbb{Z}/g\mathbb{Z} = \langle b \rangle \subset \text{Stab}(A)$, contradiction.)

Rest of proof follows the same as C1. \square

② We follow the same steps as the polynomial method proof of C1.

We first show that if $|A| + |B| - 3 = p$,

then $C = \{a+b \mid a \in A, b \in B, ab \neq 1\} = \mathbb{Z}/p\mathbb{Z}$.

Let $n \in \mathbb{Z}/p\mathbb{Z}$. Then

$$\begin{aligned} |(n-A) \cap B| &= |(n-A)| + |B| - |(n-A) \cup B| \\ &\geq 3. \end{aligned}$$

So there exists distinct $a_1, a_2, a_3 \in A$

such that $b_1, b_2, b_3 \in B$

$$a_1+b_1 = a_2+b_2 = a_3+b_3 = n.$$

Note that if $a+b = n$ and $ab = 1$, then a, b are solutions of the polynomial $x^2 - nx + 1 \in \mathbb{F}_p[x]$, which has at most 2 solutions (since \mathbb{F}_p field).

So there exists $i \in \{1, 2, 3\}$ s.t. $a_i b_i \neq 1$, so $n \in C$. \checkmark

Now assume $|A| + |B| - 3 < p$ and assume for contradiction $|C| \leq |A| + |B| - 4$.

Let $m = |A| + |B| - 4 - |C|$, set

$$P(x, y) = (x+y)^m (x^{m-1} \prod_{c \in C} (x+y-c)).$$

This polynomial has degree $|A| + |B| - 2$ and

$$P(a, b) = 0, \quad \forall (a, b) \in A \times B.$$

The coefficient of $x^{|A|-2} y^{|B|-2}$ is $\binom{|A| + |B| - 4}{|A|-2} \not\equiv 0 \pmod{p}$.

Contradiction follows as in the course. \square

③ a) Squares are $\equiv 0, 1 \pmod{4}$, so if $p \equiv 3 \pmod{4}$, then p cannot be sum of two squares.

b) If $p \equiv 1 \pmod{4}$, note that -1 is a square modulo p .

(There are many ways to see this; for example from Euler criterion $\left(\frac{-1}{p}\right) \equiv (-1)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{4}} \equiv 1 \pmod{p}$.)

Also, since $(\mathbb{Z}/p\mathbb{Z})^*$ cyclic, $\exists g$ s.t. $(\mathbb{Z}/p\mathbb{Z})^* = \langle g \rangle$ and $-1 = g^{\frac{p-1}{2}} = (g^{\frac{p-1}{4}})^2$.

In particular, $\exists 0 < x < p$ s.t. $x^2 + 1 \equiv 0 \pmod{p}$.
So $x^2 + 1 = mp$, with $0 < m < p$.
Let $m > 0$ be minimal with property that $mp = x^2 + y^2$.

c) Suppose $m \geq 1$. Since $\exists x, y$ such that $x^2 + y^2 = mp$, pick a, b with $|a|, |b| \leq \frac{m}{2}$ such that

$$x \equiv a \pmod{m}, \quad y \equiv b \pmod{m}.$$

Note that x & y are not both multiples of m (by assumption of $m \geq 1$ and minimality of m).

$$\text{Then } x^2 + y^2 \equiv a^2 + b^2 \equiv 0 \pmod{m},$$

$$\text{so } a^2 + b^2 = rm.$$

Also $a^2 + b^2 \leq \frac{m^2}{2}$, so $0 < r \leq \frac{m}{2}$.

d) Note that $xa + yb \equiv a^2 + b^2 \equiv 0 \pmod{m}$

$$xb - ya \equiv ab - ab \equiv 0 \pmod{m}$$

so $x' = \frac{xa + yb}{m} \in \mathbb{Z}$, $y' = \frac{xb - ya}{m} \in \mathbb{Z}$.

$$\begin{aligned} rm^2p &= (x'^2 + y'^2)(a^2 + b^2) = (xa + yb)^2 + (xb - ya)^2 \\ &= m^2((x')^2 + (y')^2), \end{aligned}$$

$$\text{so } (x')^2 + (y')^2 = r/p, \text{ with } 0 < r \leq \frac{m}{2}.$$

Contradiction with definition of m .

④ Follows the same steps as previous exercise. Need to show that for each prime p , there exists $0 < m < p$ with $mp = x_1^2 + x_2^2 + x_3^2 + x_4^2$.

$$\text{If } p = 2, 2 = 1^2 + 1^2 + 0^2 + 0^2.$$

If $p > 2$, we saw in the course that every element in $\mathbb{Z}/p\mathbb{Z}$ is a sum of two squares (from CD).

So there exists $0 < |x_1|, |x_2|, |x_3|, |x_4| \leq \frac{p}{2}$

$$-1 \equiv x_1^2 + x_2^2 \pmod{p}$$

$$1 \equiv x_3^2 + x_4^2 \pmod{p}.$$

Hence $x_1^2 + x_2^2 + x_3^2 + x_4^2 = mp$ with $0 < m < p$.

Rest of proof follows as previous exercise.

$$\textcircled{5} \text{ a) If } h=p-1, \text{ then } \sum_{x \in \mathbb{F}_p} x^{p-1} = p-1.$$

Now assume $1 \leq h < p-1$.

Write $(\mathbb{Z}/p\mathbb{Z})^\times = \langle g \rangle$, where g primitive root of unity.

Let $d = \gcd(h, p-1)$, so $h = dk$, $\gcd(k, p-1) = 1$.

Then $(\mathbb{Z}/p\mathbb{Z})^\times = \langle g^k \rangle$.

$$\begin{aligned} \text{Now } \sum_{x \in \mathbb{F}_p} x^h &= \sum_{x \in \mathbb{F}_p^\times} x^h = \sum_{1 \leq n \leq p-1} g^{nh} \\ &= \sum_{1 \leq n \leq p-1} (g^k)^{nd} = \\ &= d \cdot \sum_{\substack{1 \leq n \leq p-1 \\ \frac{n}{d}}} (g^k)^{nd} \quad \sum x^h = x^{p-1} - 1 \end{aligned}$$

$$= d \cdot \left(g^k \cdot \frac{(g^k)^{p-1} - 1}{g^{kd} - 1} \right) = 0,$$

Since $g^{kd} \neq 1$ as $d < p-1$.

b) Note that $P(x)^{p-1} = \begin{cases} 0, & \text{if } P(x) = 0 \\ 1, & \text{else.} \end{cases}$

Conclusion follows.

c) Note that $\sum_{\substack{x \in \mathbb{F}_p^n \\ x \in \mathbb{F}_p^n}} x_1^{j_1} \dots x_n^{j_n} = \prod_{k=1}^n \left(\sum_{x_k \in \mathbb{F}_p} x_k^{j_k} \right)$

Now, if $\sum_{k=1}^n j_k < n(p-1)$, then $\exists k \in \{1, \dots, n\}$

such that $j_k < p-1$, so $\sum_{x_k \in \mathbb{F}_p} x_k^{j_k} = 0$.

This also shows that if $\deg(Q) < n(p-1)$,
 then $S(Q) = 0$

(Q is a sum of monomials).

d) Conclusion follows by choosing $Q = 1 - P(x)^{p-1}$.

e) If $P(x)$ homogeneous of degree $0 < d \leq n$,
 then the number of solutions to $P(x) = 0$ is a multiple
 of p . Since $(0, \dots, 0)$ is a solution, there are at
 least $p-1$ other solutions.

⑥ a) Since $S_b \subset A+B$, $\forall b \in B$, then $\bigcup_{b \in B} S_b \subset A+B$.

$\forall a \in A, b \in B$, $a+b \in A+B \subset A_b+B_b = S_b$
 so $A+B \subset \bigcup S_b$.

b) Let $t \in A_b - b$.

This implies $t \in A_b - t$, so $t \in B_b \cap (A_b - t) = \bigcap_{f \in F} (B_f)$.

$$A \subset A_6 \subset \mathcal{F}_t(A_6).$$

$$\text{Also } A_6 + B_6 = \mathcal{F}_t(A_6) + \mathcal{F}_t(B_6) \text{ with}$$

$$|A_6| + |B_6| = |\mathcal{F}_t(A_6)| + |\mathcal{F}_t(B_6)| \quad \checkmark$$

c) Minimality of B_6 implies $B_6 \subset A_6 - t$, $\forall t \in A_6 - b$

$$\text{This implies } A_6 \supset \bigcup_{t \in A_6 - b} (B_6 + t) = A_6 + B_6 + t,$$

$$\text{equivalently } B_6 - b \subset \text{stab}(A_6).$$

d) Since $\text{stab } S_6 \supset \text{stab}(A_6)$,

$$\begin{aligned} |S_6| + |\text{stab } S_6| &\geq |S_6| + |\text{stab } A_6| \geq |S_6| + |B_6| \\ &\geq |A_6| + |B_6| = |A| + |B| \end{aligned}$$

e) Since $\bigcup_b S_b = A + B$, we have

$$\textcircled{*} |A + B| + |\text{stab}(A + B)| \geq \min(|S_b| + |\text{stab}(S_b)|) \geq |A| + |B|$$

Note that $A + H + B + H = A + B$

$$\text{and } \text{stab}(A + H + B + H) = H.$$

Apply $\textcircled{*}$ to $A' = A + H$, $B' = B + H$.

$\textcircled{\text{Z}}$ a) Assume we know for union of $k-1$ sets.

$$|S_1 \cup \dots \cup S_k| + |\text{stab}(S_1 \cup \dots \cup S_k)| \geq$$

$$\geq \min \{ |S_1| + |\text{stab } S_1|, |S_2 \cup \dots \cup S_k| + |\text{stab}(S_2 \cup \dots \cup S_k)| \}$$

$\geq \min\{S_j + (\text{Stab } S_j)\}$ by induction hypothesis

b) Let $H_i = \text{Stab}(S_i)$, $H_0 = H_1 \cap H_2$.

Note that $S_i = \bigcup_{s \in S_i} (s + H_i)$, so S_i is a union of cosets of H_i .

This shows all sets S_1 , S_2 , $S_1 \cup S_2$, $\text{Stab}(S_1 \cup S_2)$, $\text{Stab } S_1$, $\text{Stab } S_2$ are unions of cosets of H_0 .

Can assume $H_0 = \{0\}$.

c) If $h_1, h_1' \in H_1$, $h_2, h_2' \in H_2$ with $h_1 + h_2 = h_1' + h_2' \Rightarrow h_1 - h_1' = h_2' - h_2$

$$\rightarrow h_1 = h_1' \text{ & } h_2 = h_2' \quad \begin{matrix} \text{H}_1 \\ \text{H}_2 \end{matrix} \quad \begin{matrix} \text{H}_1 \\ \text{H}_2 \end{matrix}$$

$$\Rightarrow |H_1 + H_2| = |H_1| |H_2|.$$

d) Let $h_1 \in H_1$, $h_2 \in H_2$.

$$\begin{aligned} |(x + h_1 + h_2 + H_2) \cap S_2| &= |(x + h_1 + H_2) \cap S_2| \\ &= |(x + H_2) \cap (S_2 - h_1)| = |(x + H_2) \cap S_1|. \end{aligned}$$

Similarly for $K_2(x)$.

For all $x \in S$, $|S \setminus S_2 \cup (x + H_1)| = h_1 - K_2$.

Also $(x + H)$ is a union of h_2 cosets of H_1 , and K_1 of them are inside S_1 .

e) If $\exists x$ s.t. $0 < k_2(x) < h_2$ & $0 < k_2(x) < h_1$,
 then $|S \setminus S_2| / |S \setminus S_1| \geq k_2 / k_2 (h_1 - k_2) / (h_2 - k_2)$
 $\geq (h_1 - 1) / (h_2 - 1)$

\Rightarrow at least one of $|S \setminus S_i| \geq h_i - 1$ is true.

But then $|S \setminus S_i| \geq h_i - |H|$.

$|S_2 \cup S_1| - |S_i|$. \checkmark

f) if $k_2(x) = 0 < k_2(x)$, $k_2(y) = 0 < k_1(y)$

$$|S \setminus S_2| / |S \setminus S_1| \geq |(S \setminus S_2) \cap (x + H)| / |(S \setminus S_1) \cap (y + H)|$$

$$= k_1(y) h_1 \cdot k_1(x) h_2 \geq h_1 h_2.$$

Conclusion follows as above.

g) Note that if $x \in S_1$, then $k_1(x) > 0$

Similarly, for $x \in S_2$, $k_2(x) > 0$.

Note that if $k_1(x) = h_2$ and $k_2(x) = h_1$, then

$$x + H_2 \subset S_1 \quad \& \quad x + H_1 \subset S_2$$

$$\Rightarrow x + H \subset S_1 \quad \& \quad x + H \subset S_2.$$

Conclusion follows.

So we must have $k_2(x) = h_2$, $\forall x \in S_2$.

$$\Rightarrow H_2 + x \subset S_2, \forall x \in S_2$$

$$\Rightarrow H_2 \subset \text{stab}(S_2)$$

$\Rightarrow H_1 \subset \text{stab}(S_1 \cup S_2)$, conclusion follows.

⑧ Check any number theory book for (possibly many different) proofs of quadratic reciprocity.

8 a) Quadratic reciprocity states that
 if p, q are odd primes, then

$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) (-1)^{\frac{p-1}{2} \frac{q-1}{2}}$$

\Rightarrow Assume QR holds.

• If $p \equiv 1 \pmod{4}$, in particular $p \equiv 1 \pmod{4}$,
 so $(-1)^{\frac{p-1}{2}} = (-1)^{\frac{q-1}{2}}$

If $k \geq 1$, then $p \equiv 1 \pmod{8}$

$$\Rightarrow \left(\frac{2}{p}\right) = \left(\frac{2}{q}\right) = \begin{cases} 1, & p \equiv 1, 7 \pmod{8} \\ -1, & p \equiv 3, 5 \pmod{8} \end{cases}$$

If r/a prime $\Rightarrow \left(\frac{r}{p}\right) = \left(\frac{p}{r}\right) (-1)^{\frac{p-1}{2} \frac{r-1}{2}}$
 $r > 2$.
 $= \left(\frac{q}{r}\right) (-1)^{\frac{q-1}{2} \frac{r-1}{2}} = \left(\frac{r}{q}\right)$.

Since $r \nmid p-2$, $p \equiv 1 \pmod{4}$.

• If $p \equiv -1 \pmod{4}$

$$\text{If } 2/a \Rightarrow p \equiv -3 \pmod{8} \Rightarrow \left(\frac{2}{p}\right) = \left(\frac{2}{-3}\right).$$

$$\text{If } r/a, r > 2: \left(\frac{r}{p}\right) = \left(\frac{p}{r}\right) (-1)^{\frac{p-1}{2} \frac{r-1}{2}}$$

$$\begin{aligned}
 &= \left(-\frac{g}{r} \right) (-1)^{\frac{r-1}{2} \frac{r-1}{2}} \\
 &= \left(\frac{g}{r} \right) (-1)^{\frac{r-1}{2}} (-1)^{\frac{m}{2} \frac{r-1}{2}} \\
 &= \left(\frac{r}{g} \right) (-1)^{\frac{r-1}{2}} (-1)^{\frac{r-1}{2} \frac{r-1}{2}} (-1)^{\frac{r-1}{2} \frac{g-1}{2}} \\
 &= \left(\frac{r}{g} \right) \text{ since } (-1)^{\frac{r-1}{2} + \frac{g-1}{2}} = 1.
 \end{aligned}$$

' \Leftarrow ' Select $a = \pm r \pm g$ depending on congruences mod 4. . . -

b) Evaluate $Z = a \cdot (2a) \cdots \left(\frac{r-1}{2}\right) a \pmod{r}$ in two different ways.

c)